Unification of Field Theory and Maximum Entropy Methods for Learning Probability Densities
نویسنده
چکیده
The need to estimate smooth probability distributions (a.k.a. probability densities) from finite sampled data is ubiquitous in science. Many approaches to this problem have been described, but none is yet regarded as providing a definitive solution. Maximum entropy estimation and Bayesian field theory are two such approaches. Both have origins in statistical physics, but the relationship between them has remained unclear. Here I unify these two methods by showing that every maximum entropy density estimate can be recovered in the infinite smoothness limit of an appropriate Bayesian field theory. I also show that Bayesian field theory estimation can be performed without imposing any boundary conditions on candidate densities, and that the infinite smoothness limit of these theories recovers the most common types of maximum entropy estimates. Bayesian field theory thus provides a natural test of the maximum entropy null hypothesis and, furthermore, returns an alternative (lower entropy) density estimate when the maximum entropy hypothesis is falsified. The computations necessary for this approach can be performed rapidly for one-dimensional data, and software for doing this is provided.
منابع مشابه
Determination of Maximum Bayesian Entropy Probability Distribution
In this paper, we consider the determination methods of maximum entropy multivariate distributions with given prior under the constraints, that the marginal distributions or the marginals and covariance matrix are prescribed. Next, some numerical solutions are considered for the cases of unavailable closed form of solutions. Finally, these methods are illustrated via some numerical examples.
متن کاملModeling of the Maximum Entropy Problem as an Optimal Control Problem and its Application to Pdf Estimation of Electricity Price
In this paper, the continuous optimal control theory is used to model and solve the maximum entropy problem for a continuous random variable. The maximum entropy principle provides a method to obtain least-biased probability density function (Pdf) estimation. In this paper, to find a closed form solution for the maximum entropy problem with any number of moment constraints, the entropy is consi...
متن کاملTitle: Content analysis of English high school textbooks based on Shannon entropy method
Introduction: English language teaching curriculum is very important in effective teaching and learning of students. In order to pay attention to the importance of teaching English as one of the most important communication tools, it is necessary to develop a curriculum that can accommodate all the necessary English language teaching needs. Therefore, the purpose of this study is to analyze t...
متن کاملAn Alternative Method for Estimating and Simulating Maximum Entropy Densities
This paper proposes a method of estimating and simulating a maximum entropy distribution given moment conditions based on MonteCarlo approach. The method provides an simple alternative to conventional calculation methods of maximum entropy densities which involve complex numerical integration and are subject to occasional failure. We first show that maximum entropy density on a random sample co...
متن کاملFinancial Probabilities from Fisher Information
We present a novel synthesis of Fisher information and asset pricing theory that yields a practical method for reconstructing the probability density implicit in security prices. The Fisher information approach to these inverse problems transforms the search for a probability density into the solution of a differential equation for which a substantial collection of numerical methods exist. We i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 92 3 شماره
صفحات -
تاریخ انتشار 2015